Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Insects ; 12(11)2021 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-34821813

RESUMO

Temperature is a main driver of the ecology and evolution of ectotherms. In particular, the ability to move at sub-lethal low temperatures can be described through three thermal tolerance indices-critical thermal minimum (CTmin), chill coma temperature (CCT), and activity recovery (AR). Although these indices have proven relevant for inter-specific comparisons, little is known about their intraspecific variability as well as possible genetic correlations between them. We thus investigated these two topics (intraspecific variability and genetic correlations between thermal tolerance indices) using the minute wasp, Trichogramma cacoeciae. Strains from T. cacoeciae were sampled across three geographic regions in France-two bioclimatic zones along a sharp altitudinal cline in a Mediterranean context (meso-Mediterranean at low elevations and supra-Mediterranean at higher elevations) and a more northwestern area characterized by continental or mountainous climates. Our results evidenced a significant effect of both the longitude and the severity of the cold during winter months on CCT. Results were however counter-intuitive since the strains from the two bioclimatic zones characterized by more severe winters (northwestern area and supra-Mediterranean) exhibited opposite patterns. In addition, a strong positive correlation was observed between CCT and CTmin. Neither strain differentiation nor the covariations between traits seem to be linked with the molecular diversity observed on the part of the mitochondrial marker COI.

2.
Insects ; 12(9)2021 Aug 24.
Artigo em Inglês | MEDLINE | ID: mdl-34564202

RESUMO

We report the first detection of Trissolcus mitsukurii in France. More than 1860 sentinel egg masses of Halyomorpha halys (BMSB) were exposed in the field during the 2018-2020 period, and 12 specimens of T. mitsukurii emerged from one egg mass. Their taxonomic identification was confirmed both by morphological and molecular analysis. Trissolcus mitsukurii, similar to T. japonicus, is an egg parasitoid of BMSB in its area of origin in Asia, and both species are considered to be candidates for a classical biological control strategy against BMSB. Trissolcus mitsukurii was previously recorded in Italy where it is well established and widespread, and this may be the source of the French population. Possible permanent establishment and dispersion of T. mitsukurii in France should be monitored with emphasis on its potential effect on BMSB populations.

3.
Sci Rep ; 10(1): 19096, 2020 11 05.
Artigo em Inglês | MEDLINE | ID: mdl-33154398

RESUMO

Uncertainty about the taxonomic status and the specificity of a species commonly prevent its consideration as a candidate for biological control of pest organisms. Here we use a combination of molecular analysis and crossing experiments to gather evidence that the parasitoid wasp Ganaspis brasiliensis, a candidate for biological control of the invasive spotted wing drosophila Drosophila suzukii, is a complex of at least two cryptic species. Complementary experiments demonstrate that individuals from one genetic group readily parasitize several drosophila species regardless of their food source while individuals from the other one are almost exclusively specific to larvae feeding in ripening fruits. Because only D. suzukii attacks ripening fruits in its area of invasion, parasitoids from this second group appear to be well suited as a biological control agent. Our study demonstrates the need for a combination of biosystematics with biological and ecological investigations for the development of safe and efficient biological control programs.


Assuntos
Agentes de Controle Biológico , Drosophila/parasitologia , Drosophila/patogenicidade , Vespas/fisiologia , Vespas/patogenicidade , Animais , China , Ecossistema , Feminino , Frutas/parasitologia , Genética Populacional , Genoma de Inseto , Haplótipos , Interações Hospedeiro-Parasita/genética , Espécies Introduzidas , Japão , Masculino , Especificidade da Espécie , Vespas/genética
4.
PLoS One ; 11(6): e0157965, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27362639

RESUMO

Pseudococcus comstocki (Hemiptera: Pseudococcidae) is a mealybug species native to Eastern Asia and present as an invasive pest in northern Italy and southern France since the start of the century. It infests apple and pear trees, grapevines and some ornamental trees. Biocontrol programmes against this pest proved successful in central Asia and North America in the second half of the 20th century. In this study, we investigated possible biocontrol agents against P. comstocki, with the aim of developing a biocontrol programme in France. We carried out systematic DNA-barcoding at each step in the search for a specialist parasitoid. First we characterised the French target populations of P. comstocki. We then identified the parasitoids attacking P. comstocki in France. Finally, we searched for foreign mealybug populations identified a priori as P. comstocki and surveyed their hymenopteran parasitoids. Three mealybug species (P. comstocki, P. viburni and P. cryptus) were identified during the survey, together with at least 16 different parasitoid taxa. We selected candidate biological control agent populations for use against P. comstocki in France, from the species Allotropa burrelli (Hymenoptera: Platygastridae) and Acerophagus malinus (Hymenoptera: Encyrtidae). The coupling of molecular and morphological characterisation for both pests and natural enemies facilitated the programme development and the rejection of unsuitable or generalist parasitoids.


Assuntos
Hemípteros/parasitologia , Controle de Insetos/métodos , Parasitos/classificação , Controle Biológico de Vetores/métodos , Animais , Agentes de Controle Biológico , Código de Barras de DNA Taxonômico , França , Interações Hospedeiro-Parasita , Parasitos/isolamento & purificação , Parasitos/fisiologia , Filogenia , Controle da População
5.
Evol Appl ; 5(5): 498-510, 2012 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-22949925

RESUMO

In the framework of biological control, the selection of effective natural enemies determines the final pest control. Thus, the genetic improvement of biocontrol agents could enhance the efficiency of biocontrol programs. Although promising, this approach has rarely been applied in this field. At the intraspecific level, hybridization between divergent populations of biocontrol agents is expected to promote hybrid vigor (heterosis), but it is not clear to what extent. An even more difficult task is the ability to predict the fitness of hybrids from the biological characteristics of their parents. We investigated these general questions by crossing seven populations of the parasitoid wasp Trichogramma chilonis (Hymenoptera: Trichogrammatidae). Our results show different levels of mating compatibilities among populations, including asymmetric or almost complete reproductive isolation. Hybrids' performance (fitness of the F(1) generation) ranges from inbreeding depression to heterosis. It was possible, to some extent, to predict hybrid fitness from pairwise genetic and phenotypic distances among parents, in accordance with the 'dominance' hypothesis. This may provide general guidelines for the genetic improvement of biological control agents.

6.
Comp Biochem Physiol B Biochem Mol Biol ; 149(3): 419-27, 2008 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-18086545

RESUMO

The binary toxin (Bin) from Bacillus sphaericus exhibits a highly insecticidal activity against Culex and Anopheles mosquitoes. The cytotoxicity of Bin requires an interaction with a specific receptor present on the membrane of midgut epithelial cells in larvae. A direct correlation exists between binding affinity and toxicity. The toxin binds with high affinity to its receptor in its primary target, Culex pipiens, and displays a lower affinity to the receptor in Anopheles gambiae, which is less sensitive to Bin. Although the Bin receptor has previously been identified and named Cpm1 in C. pipiens, its structure in Anopheles remains unknown. In this study, we hypothesize that the Anopheles Bin receptor is an ortholog of Cpm1. By screening the Anopheles genomic database, we identified a candidate gene (Agm3) which is expressed primarily on the surface of midgut cells in larvae and which functions as a receptor for Bin. A Cpm1-like gene is also present in the Bin-refractory species Aedes aegypti. Overall, our results indicate that the three mosquito genes examined share a very similar organization and are strongly conserved at the amino acid level, in particular in the NH(2)-terminus, a region believed to contain the ligand binding site, suggesting that relatively few amino acids residues are critical for high affinity binding of the toxin.


Assuntos
Anopheles/metabolismo , Toxinas Bacterianas/metabolismo , Vetores de Doenças , Proteínas de Insetos/metabolismo , Malária/parasitologia , Receptores de Superfície Celular/metabolismo , Sequência de Aminoácidos , Animais , Anopheles/genética , Sequência de Bases , Clonagem Molecular , Sequência Conservada , DNA Complementar/genética , Perfilação da Expressão Gênica , Regulação da Expressão Gênica , Genes de Insetos , Proteínas de Insetos/química , Proteínas de Insetos/genética , Larva/metabolismo , Dados de Sequência Molecular , Ligação Proteica , Transporte Proteico , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Receptores de Superfície Celular/química , Receptores de Superfície Celular/genética , Alinhamento de Sequência
7.
Cell Microbiol ; 9(8): 2022-9, 2007 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-17394558

RESUMO

The binary toxin is the major active component of Bacillus sphaericus, a microbial larvicide used for controlling some vector mosquito-borne diseases. B. sphaericus resistance has been reported in many part of the world, leading to a growing concern for the usefulness of this environmental friendly insecticide. Here we characterize a novel mechanism of resistance to the binary toxin in a natural population of the West Nile virus vector, Culex pipiens. We show that the insertion of a transposable element-like DNA into the coding sequence of the midgut toxin receptor induces a new mRNA splicing event, unmasking cryptic donor and acceptor sites located in the host gene. The creation of the new intron causes the expression of an altered membrane protein, which is incapable of interacting with the toxin, thus providing the host mosquito with an advantageous phenotype. As a large portion of insect genomes is composed of transposable elements or transposable elements-related sequences, this new mechanism may be of general importance to appreciate their significance as potent agents for insect resistance to the microbial insecticides.


Assuntos
Bacillus/fisiologia , Culex/microbiologia , Elementos de DNA Transponíveis , Proteínas de Insetos/metabolismo , alfa-Glucosidases/metabolismo , Animais , Toxinas Bacterianas/metabolismo , Sequência de Bases , Culex/genética , Culex/metabolismo , Variação Genética , Proteínas de Insetos/genética , Insetos Vetores , Mucosa Intestinal/metabolismo , Íntrons , Larva , Dados de Sequência Molecular , Splicing de RNA , RNA Mensageiro/genética , alfa-Glucosidases/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...